Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 16.317
Filtrar
1.
J Neuroinflammation ; 21(1): 88, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38600569

RESUMO

BACKGROUND: Mechanical softening of the glial scar region regulates axonal regeneration to impede neurological recovery in central nervous system (CNS) injury. Microglia, a crucial cellular component of the glial scar, facilitate neuronal survival and neurological recovery after spinal cord injury (SCI). However, the critical mechanical characterization of injured spinal cord that harmonizes neuroprotective function of microglia remains poorly understood. METHODS: Spinal cord tissue stiffness was assessed using atomic force microscopy (AFM) in a mouse model of crush injury. Pharmacological depletion of microglia using PLX5622 was used to explore the effect of microglia on mechanical characterization. Conditional knockout of Fascin-1 in microglia (Fascin-1 CKO) alone or in combination with inhibition of myosin activity was performed to delve into relevant mechanisms of microglia regulating mechanical signal. Immunofluorescence staining was performed to evaluate the related protein levels, inflammatory cells, and neuron survival after SCI. The Basso mouse scale score was calculated to assess functional recovery. RESULTS: Spinal cord tissue significantly softens after SCI. Microglia depletion or Fascin-1 knockout in microglia limits tissue softening and alters mechanical characterization, which leads to increased tissue pathology and impaired functional recovery. Mechanistically, Fascin-1 inhibits myosin activation to promote microglial migration and control mechanical characterization after SCI. CONCLUSIONS: We reveal that Fascin-1 limits myosin activity to regulate mechanical characterization after SCI, and this mechanical signal should be considered in future approaches for the treatment of CNS diseases.


Assuntos
Proteínas dos Microfilamentos , Microglia , Traumatismos da Medula Espinal , Animais , Camundongos , Proteínas de Transporte , Gliose/metabolismo , Proteínas dos Microfilamentos/metabolismo , Microglia/metabolismo , Medula Espinal/patologia , Traumatismos da Medula Espinal/patologia
2.
Neotrop Entomol ; 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38656593

RESUMO

We report the first record of the occurrence of the banana weevil, Cosmopolites sordidus (Germar, 1823) (Coleoptera: Curculionidae), an economically important pest of bananas (Musa spp.), from Fifa Mountains in Saudi Arabia. Moreover, we recorded the first observation of damage caused to bananas by C. sordidus in a banana farm in Jazan Province, southwestern Saudi Arabia, in March 2022. Molecular characterization using DNA sequences of the mitochondrial COI gene confirmed the morphological identification of C. sordidus. This discovery is considered a warning notice to prevent the potential establishment and spread of this dangerous pest in the banana cultivation regions in Saudi Arabia. Therefore, it is recommended that detection and monitoring of banana weevil should be undertaken in Saudi banana farms in order to restrict the dissemination of this weevil to other banana cultivation areas.

3.
Colloids Surf B Biointerfaces ; 238: 113919, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38663311

RESUMO

Vulvovaginal candidiasis, mostly caused by Candida albicans, remains a prevalent concern in women's health. Annona muricata L. (Annonaceae), a plant native from Brazil, is well-known for its therapeutic potential, including antitumor, anti-inflammatory, and antimicrobial properties. This study presents an innovative hydrogel formulation containing the ethanolic extract from A. muricata leaves designed to control C. albicans in an in vivo model of vulvovaginal candidiasis. Here, we report the development, thermal, physicochemical and rheological characterization of a Carbopol®-based hydrogel containing A. muricata extract. Furthermore, we evaluated its activity in a vulvovaginal candidiasis in vivo model. Thermal analyses indicated that the addition of the extract increased the polymer-polymer and polymer-solvent interactions.Rheological analysis showed a decrease in the viscosity and elasticity of the formulation as the A. muricata extract concentration increased, suggesting a liquid-like behavior. After treatment with the Carbopol®-based hydrogel with A. muricata, our in vivo results showed a significant reduction in vulvovaginal fungal burden and infection, as well as a reduction in mucosal inflammation. The current research opens up possibilities for the application of the Carbopol®-based hydrogel with A. muricata as a natural therapeutic option for the treatment of vulvovaginal candidiasis.

4.
Int J Biol Macromol ; : 131761, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38663705

RESUMO

Lepidium meyenii Walp., also known as the "Peruvian national treasure", is a popular functional food in the daily lives of Peruvian people due to its bioactive with main polysaccharides. However, studies on polysaccharides isolated from Lepidium meyenii were few. Two new highly heterogeneous polysaccharides, MCP-1a and MCP-2b, were isolated and purified from the tuber of Lepidium meyenii. The structure characterization revealed that MCP-1a primarily consisted of D-Glc and had a molecular weight of 6.6 kDa. Its backbone was composed of 1,4,6-α-D-Glc, while branches feature T-α-L-Ara, 1,5-α-L-Ara, and T-α-D-Glc attached to the O-6 positions. MCP-2b was a rare arabinogalactan with a molecular weight of 49.4 kDa. Interestingly, the backbone of MCP-2b was composed of 1,6-ß-D-Gal, 1,3,6-ß-D-Gal with a few 1,3-ß-D-GlcpA-4-OMe units inserted. Side chains of MCP-2b were mainly composed of 1,3-ß-D-Gal, T-ß-D-Gal, T-α-L-Ara, 1,5-α-L-Ara, with trace amounts of 1,4-ß-D-Glc and T-ß-D-Glc. The bioactivity assay results revealed that MCP-1a and MCP-2b increased the release of NO, IL-1ß, TNF-α, and IL-6 from RAW 264.7 cells at concentrations ranging from 50 µg/mL to 400 µg/mL. Furthermore, MCP-1a and MCP-2b could promote the expression of key transcription factors (IκB-α, p-IκB-α, p65, and p-p65) in the NF-κB pathway, indicating that MCP-1a and MCP-2b had potential immunomodulatory activities.

5.
J Pharm Anal ; 14(4): 100906, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38634060

RESUMO

Extracellular polymeric substances (EPS) constitutes crucial elements within bacterial biofilms, facilitating accelerated antimicrobial resistance and conferring defense against the host's immune cells. Developing precise and effective antibiofilm approaches and strategies, tailored to the specific characteristics of EPS composition, can offer valuable insights for the creation of novel antimicrobial drugs. This, in turn, holds the potential to mitigate the alarming issue of bacterial drug resistance. Current analysis of EPS compositions relies heavily on colorimetric approaches with a significant bias, which is likely due to the selection of a standard compound and the cross-interference of various EPS compounds. Considering the pivotal role of EPS in biofilm functionality, it is imperative for EPS research to delve deeper into the analysis of intricate compositions, moving beyond the current focus on polymeric materials. This necessitates a shift from heavy reliance on colorimetric analytic methods to more comprehensive and nuanced analytical approaches. In this study, we have provided a comprehensive summary of existing analytical methods utilized in the characterization of EPS compositions. Additionally, novel strategies aimed at targeting EPS to enhance biofilm penetration were explored, with a specific focus on highlighting the limitations associated with colorimetric methods. Furthermore, we have outlined the challenges faced in identifying additional components of EPS and propose a prospective research plan to address these challenges. This review has the potential to guide future researchers in the search for novel compounds capable of suppressing EPS, thereby inhibiting biofilm formation. This insight opens up a new avenue for exploration within this research domain.

6.
Int J Pharm ; 657: 124147, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38657715

RESUMO

The present study investigated the feasibility of fabricating self-assembled liposomes, LeciPlex®, a phospholipid-based vesicular nanocarrier using cationic, anionic, and nonionic stabilizers. The phospholipid investigated was soy phosphatidylcholine and the nano-precipitation method based on solvent diffusion was applied as the fabrication technique of liposomes in this study. The effects of various formulation variables, such as lipid and stabilizer concentration, total solid concentration, and solvent type on the self-assembly of vesicles were studied for physical characterization including particle size analysis, differential scanning calorimetry, viscosity, optical transmittance, transmission electron microscopy, and small angle neutron scattering. All three LeciPlex® systems exhibited a direct relationship between particle size and phospholipid concentration. The two categoric variables, solvent, and stabilizer used to prepare LeciPlex® demonstrated a significant effect on particle size for all three LeciPlex® systems. Small angle neutron scattering, and optical transmittance confirmed the formation of micellar systems at a phospholipid: stabilizer ratio of 1:2 and vesicular systems at a ratio of 2:1 for the systems stabilized with anionic and nonionic surfactants. In contrast to this, the LeciPlex® formed with the cationic stabilizer Dioctadecyldimethylammonium bromide (DODAB), formed vesicles at both ratios. From these investigations, it was clear that the formulation space for LeciPlex® was diversified by the addition of cationic, anionic, and non-ionic stabilizers.

7.
Front Microbiol ; 15: 1387208, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38659991

RESUMO

Infection with either Rickettsia prowazekii or Orientia tsutsugamushi is common, yet diagnostic capabilities are limited due to the short window for positive identification. Until now, although targeted enrichment had been applied to increase sensitivity of sequencing-based detection for various microorganisms, it had not been applied to sequencing of R. prowazekii in clinical samples. Additionally, hybridization-based targeted enrichment strategies had only scarcely been applied to qPCR of any pathogens in clinical samples. Therefore, we tested a targeted enrichment technique as a proof of concept and found that it dramatically reduced the limits of detection of these organisms by both qPCR and high throughput sequencing. The enrichment methodology was first tested in contrived clinical samples with known spiked-in concentrations of R. prowazekii and O. tsutsugamushi DNA. This method was also evaluated using clinical samples, resulting in the simultaneous identification and characterization of O. tsutsugamushi directly from clinical specimens taken from sepsis patients. We demonstrated that the targeted enrichment technique is helpful by lowering the limit of detection, not only when applied to sequencing, but also when applied to qPCR, suggesting the technique could be applied more broadly to include other assays and/or microbes for which there are limited diagnostic or detection modalities.

8.
MethodsX ; 12: 102642, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38660026

RESUMO

The number of publications related to the implementation of nanotechnology in the construction industry, and specifically to the application of nanosilica (SiO2), has had a constant increase in recent years. Based on this, in the present work, an analysis was carried out using bibliometric techniques, with the aim at characterizing the development of specialized literature and identifying the largest areas of growth in the field, maintaining hydrophobic nanosilica as the research guideline. This analysis acquired information from the Scopus and Web of Science (WoS) databases to compare bibliometric indicators of the publications. It should be noted that, even though bibliometric analysis is useful to identify the study areas of greatest interest, to complement this work, the implementation of a method that helped in the research process to obtain the most important bibliography was required. This study implemented Methodi Ordinatio, which helped to take a new direction. Therefore, based on this method, a list of articles cataloged and ranked is obtained, which is the basis for integrating the final bibliographic portfolio. •The study applies the Methodi Ordinatio to obtain a portfolio of the most relevant articles to guide the researchers' work.•Insightful information can be obtained using VOSviewer to analyze and visualize metadata of the bibliographic portfolio.•The study demonstrates how the alpha value in the InOrdinatio formula modifies the resulting portfolio.

9.
Heliyon ; 10(8): e29433, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38644870

RESUMO

Nanoparticles have different shapes and sizes between the range of 1-100 nm, which show advantages for stabilizing compounds, higher carrier capacity, and lower costs. Metal nanoparticles such as copper, gold, silver, and zinc are favorable components for various applications due to their interesting properties. In the present study, nanoparticles were synthesized by reduction with flower extracts of Bauhinia variegate & Saussurea lappa that were used to stabilize the copper nanoparticles. Furthermore, the characterization of plants synthesized copper nanoparticles was carried out through UV-visible dynamic light scattering. Additionally, morphological characterization of nanoparticles was confirmed by scanning electron microscopy and energy dispersive X-ray spectroscopy confirmed the elemental composition of copper nanoparticles. Powder X-ray diffraction was conducted for the analysis of crystallinity, purity, and crystal size of plant-synthesized copper nanoparticles. The average particle size was evaluated and exhibited the particle size at the peak of 8.721 nm and 98.03 nm for flower extracts of Bauhinia variegate & Saussurea lappa copper nanoparticles. The Fourier Transform Infrared spectrum was taken to scrutinize the various functional groups that were responsible for the reduction of the copper ions. The antimicrobial results against the bacterial strains with the positive test results of the zone of inhibition were for Bauhinia variegate (17 mm, 18 mm, 19 mm, and 18 mm) and Saussurea lappa (17 mm, 19 mm, 18 mm, and 18 mm) respectively for plants synthesized copper nanoparticles against the Staphylococcus aureus, Escherichia coli, Klebsiella pneumonia and Pseudomonas aeruginosa. Lipase inhibition assay and Amylase inhibition assay with different concentrations (20 µg/mL to 100 µg/mL) for Bauhinia variegate & Saussurea lappa (12.34 %-59.67 % and 10.50 %-47.01 %) and (34.52 %-89.02 % and 22.34 %-56.45 %) confirmed the anti-obesity and anti-diabetic activities of plants extract synthesized copper nanoparticles.

10.
Front Plant Sci ; 15: 1347861, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38645398

RESUMO

Plant-specific VQ proteins have crucial functions in the regulation of plant growth and development, as well as in plant abiotic stress responses. Their roles have been well established in the model plant Arabidopsis thaliana; however, the functions of the potato VQ proteins have not been adequately investigated. The VQ protein core region contains a short FxxhVQxhTG amino acid motif sequence. In this study, the VQ31 protein from potato was cloned and functionally characterized. The complete open reading frame (ORF) size of StVQ31 is 672 bp, encoding 223 amino acids. Subcellular localization analysis revealed that StVQ31 is located in the nucleus. Transgenic Arabidopsis plants overexpressing StVQ31 exhibited enhanced salt tolerance compared to wild-type (WT) plants, as evidenced by increased root length, germination rate, and chlorophyll content under salinity stress. The increased tolerance of transgenic plants was associated with increased osmotic potential (proline and soluble sugars), decreased MDA accumulation, decreased total protein content, and improved membrane integrity. These results implied that StVQ31 overexpression enhanced the osmotic potential of the plants to maintain normal cell growth. Compared to the WT, the transgenic plants exhibited a notable increase in antioxidant enzyme activities, reducing cell membrane damage. Furthermore, the real-time fluorescence quantitative PCR analysis demonstrated that StVQ31 regulated the expression of genes associated with the response to salt stress, including ERD, LEA4-5, At2g38905, and AtNCED3. These findings suggest that StVQ31 significantly impacts osmotic and antioxidant cellular homeostasis, thereby enhancing salt tolerance.

11.
Plant Direct ; 8(4): e585, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38651017

RESUMO

Sugar transport proteins (STPs) are high-affinity H+-coupled hexose symporters. Recently, the contribution of STP13 to bacterial and fungal pathogen resistance across multiple plant species has garnered significant interest. Quantitative PCR analysis of source leaves, developing embryos, and seed coats of Phaseolus vulgaris L. (common bean) revealed that PvSTP13.1 was expressed in source leaves and seed coats throughout seed development. In contrast, PvSTP13.1 transcripts were detected at exceedingly low levels in developing embryos. To characterize the transport mechanism, PvSTP13.1 was expressed in Xenopus laevis oocytes, and inward-directed currents were analyzed using two-electrode voltage clamping. PvSTP13.1 was shown to function as an H+-coupled monosaccharide symporter exhibiting a unique high affinity for hexoses and aldopentoses at depolarized membrane potentials. Specifically, of the 31 assessed substrates, which included aldohexoses, deoxyhexoses, fructose, 3-O-methyl-D-glucose, aldopentoses, polyols, glycosides, disaccharides, trisaccharides, and glucuronic acid, PvSTP13.1 displayed the highest affinity (K 0.5) for glucose (43 µM), mannose (92 µM), galactose (145 µM), fructose (224 µM), xylose (1.0 mM), and fucose (3.7 mM) at pH 5.6 at a depolarized membrane potential of -40 mV. The results presented here suggest PvSTP13.1 contributes to retrieval of hexoses from the apoplasmic space in source leaves and coats of developing seeds.

12.
J Imaging ; 10(4)2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38667993

RESUMO

Scanning micrο X-ray fluorescence (µ-XRF) and multispectral imaging (MSI) were applied to study philately stamps, selected for their small size and intricate structures. The µ-XRF measurements were accomplished using the M6 Jetstream Bruker scanner under optimized conditions for spatial resolution, while the MSI measurements were performed employing the XpeCAM-X02 camera. The datasets were acquired asynchronously. Elemental distribution maps can be extracted from the µ-XRF dataset, while chemical distribution maps can be obtained from the analysis of the multispectral dataset. The objective of the present work is the fusion of the datasets from the two spectral imaging modalities. An algorithmic co-registration of the two datasets is applied as a first step, aiming to align the multispectral and µ-XRF images and to adapt to the pixel sizes, as small as a few tens of micrometers. The dataset fusion is accomplished by applying k-means clustering of the multispectral dataset, attributing a representative spectrum to each pixel, and defining the multispectral clusters. Subsequently, the µ-XRF dataset within a specific multispectral cluster is analyzed by evaluating the mean XRF spectrum and performing k-means sub-clustering of the µ-XRF dataset, allowing the differentiation of areas with variable elemental composition within the multispectral cluster. The data fusion approach proves its validity and strength in the context of philately stamps. We demonstrate that the fusion of two spectral imaging modalities enhances their analytical capabilities significantly. The spectral analysis of pixels within clusters can provide more information than analyzing the same pixels as part of the entire dataset.

13.
Nanomaterials (Basel) ; 14(8)2024 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-38668221

RESUMO

Sputtering of silicon in a He magnetron discharge (MS) has been reported as a bottom-up procedure to obtain He-charged silicon films (i.e., He nanobubbles encapsulated in a silicon matrix). The incorporation of heavier noble gases is demonstrated in this work with a synergistic effect, producing increased Ne and Ar incorporations when using He-Ne and He-Ar gas mixtures in the MS process. Microstructural and chemical characterizations are reported using ion beam analysis (IBA) and scanning and transmission electron microscopies (SEM and TEM). In addition to gas incorporation, He promotes the formation of larger nanobubbles. In the case of Ne, high-resolution X-ray photoelectron and absorption spectroscopies (XPS and XAS) are reported, with remarkable dependence of the Ne 1s photoemission and the Ne K-edge absorption on the nanobubble's size and composition. The gas (He, Ne and Ar)-charged thin films are proposed as "solid" targets for the characterization of spectroscopic properties of noble gases in a confined state without the need for cryogenics or high-pressure anvils devices. Also, their use as targets for nuclear reaction studies is foreseen.

14.
Toxins (Basel) ; 16(4)2024 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-38668614

RESUMO

Ciguatera Poisoning (CP) is an illness associated with the consumption of fish contaminated with potent natural toxins found in the marine environment, commonly known as ciguatoxins (CTXs). The risk characterization of CP has become a worldwide concern due to the widespread expansion of these natural toxins. The identification of CTXs is hindered by the lack of commercially available reference materials. This limitation impedes progress in developing analytical tools and conducting toxicological studies essential for establishing regulatory levels for control. This study focuses on characterizing the CTX profile of an amberjack responsible for a recent CP case in the Canary Islands (Spain), located on the east Atlantic coast. The exceptional sensitivity offered by Capillary Liquid Chromatography coupled with High-Resolution Mass Spectrometry (cLC-HRMS) enabled the detection, for the first time in fish contaminated in the Canary Islands, of traces of an algal ciguatoxin recently identified in G. silvae and G. caribeaus from the Caribbean Sea. This algal toxin was structurally characterized by cLC-HRMS being initially identified as C-CTX5. The total toxin concentration of CTXs was eight times higher than the guidance level proposed by the Food and Drug Administration (0.1 ng C-CTX1/g fish tissue), with C-CTX1 and 17-hydroxy-C-CTX1 as major CTXs.


Assuntos
Intoxicação por Ciguatera , Ciguatoxinas , Ciguatoxinas/análise , Espanha , Animais , Cromatografia Líquida , Espectrometria de Massas
15.
Ther Deliv ; 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38639652

RESUMO

Aim: To prepare fisetin (FIS) cubosomal nanoformulation to increase aqueous solubility and anticancer activity. Methods: Top-down method using glyceryl monooleate (GMO) and Pluronic F-127. Results: Optimized using 2% GMO and 1% Pluronic F-127, reported 93.07 nm particle size, 80.10% drug entrapment, and reports more than 50% enhanced in vitro drug release than native FIS. MTT assay reports IC50 Values of FIS 16.59 µg/ml and optimized cubosomal FIS nanoformulation (FISCUB) 12.18 µg/ml. The colony numbers observed in clonogenic assay for FISCUB were 8.33 ± 0.58 and FIS 11.67 ± 1.15. In flow cytometry study, apoptotic cells in FISCUB and FIS-treated A549 cells were found to be 33.4 and 6.83% respectively. Conclusion: A stable cubosomal nanoformulation of FIS showed enhanced aqueous solubility and anticancer activity.

16.
SLAS Technol ; : 100133, 2024 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-38583803

RESUMO

Obtaining high-quality omics data at the single-cell level from archived human tissue samples is crucial for gaining insights into cellular heterogeneity and pushing the field of personalized medicine forward. In this technical brief we present a comprehensive methodological framework for the efficient enzyme-free preparation of tissue-derived single cell suspensions and their conversion into single-cell miRNA sequencing libraries. The resulting data from this study have the potential to deepen our understanding of miRNA expression at the single-cell level and its relevance in the context of the examined tissues. The workflow encompasses tissue collection, RNALater immersion, storage, thawing, TissueGrinder-mediated dissociation, miRNA lysis, library preparation, sequencing, and data analysis. Quality control measures ensure reliable miRNA data, with specific attention to sample quality. The UMAP analysis reveals tissue-specific cell clustering, while miRNA diversity reflects tissue variations. The presented workflow effectively processes preserved tissues, extending opportunities for retrospective analysis and biobank utilization.

17.
J Sci Food Agric ; 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38597456

RESUMO

BACKGROUND: Tea dregs, typically generated during the production of instant tea or tea beverages, have conventionally been regarded as waste material and routinely discarded. Nevertheless, contemporary research endeavors are concentrating on discovering efficient methods for utilizing the potential of this discarded resource. RESULTS: In this study, we employed a sequential extraction method using chemical chelating agents to extract and isolate four distinct cell wall polysaccharides, designated as CWTPS-1 through CWTPS-4, from the tea dregs of Liubao brick tea. A comprehensive investigation into their physicochemical, structural, and hypoglycemic properties was conducted. The analysis of chemical composition and physicochemical characteristics revealed that all four CWTPSs were characterized as acidic polysaccharides, albeit with varying chemical compositions and physicochemical attributes. Specifically, the xyloglucan fractions, CWTPS-3 and CWTPS-4, were found to be rich in glucose and xylose, displaying a more uniform molecular weight distribution, greater structural stability, and a more irregular surface compared to the others. Moreover, they exhibited a higher diversity of monosaccharide residues. Importantly, our research unveiled that all four CWTPSs exhibited the capacity to modulate key glucose-regulated and antioxidant enzyme activities within HepG2 cells via the IRS-1-PI3K/AKT signaling pathway, thereby ameliorating cellular insulin resistance. Furthermore, our correlation analysis highlighted significant associations between monosaccharide composition and neutral sugar content with the observed hypoglycemic activity of CWTPSs. CONCLUSION: This study highlights the potential of utilizing tea dregs as a valuable resource, making a significant contribution to the advancement of the tea industry. Furthermore, CWTPS-4 exhibits promising prospects for further development as a functional food ingredient or additive. © 2024 Society of Chemical Industry.

18.
Int J Biol Macromol ; 267(Pt 2): 131229, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38599438

RESUMO

Biomass-derived oligo- and polysaccharides may act as elicitors, i.e., bioactive molecules that trigger plant immune responses. This is particularly important to increase the resistance of plants to abiotic and biotic stresses. In this study, cellulose nanofibrils (CNF) gels were obtained by TEMPO-mediated oxidation of unbleached and bleached kraft pulps. The molecular structures were characterized with ESI and MALDI MS. Analysis of the fine sequences was achieved by MS and MS/MS of the water-soluble oligosaccharides obtained by acid hydrolysis of the CNF gels. The analysis revealed the presence of two families: one corresponding to homoglucuronic acid sequences and the other composed by alternating glucose and glucuronic acid units. The CNF gels, alone or with the addition of the water-soluble oligosaccharides, were tested on Chili pepper (Capsicum annuum). Based on the characterization of the gene expression with Next Generation Sequencing (NGS) of the C. annuum's total messenger RNA, the differences in growth of the C. annuum seeds correlated well with the downregulation of the pathways regulating photosynthesis. A downregulation of the response to abiotic factors was detected, suggesting that these gels would improve the resistance of the C. annuum plants to abiotic stress due to, e.g., water deprivation and cold temperatures.

19.
Int J Biol Macromol ; 267(Pt 2): 131634, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38636747

RESUMO

Oxidative damage is an important cause of aging. The antioxidant and anti-aging activities of Longan polysaccharides, especially purified Longan polysaccharides, have not been thoroughly investigated. Therefore, this study aimed to investigate the antioxidant and anti-aging activities and mechanisms of crude polysaccharides and purified polysaccharides from Longan. A purified acidic Longan polysaccharide LP-A was separated from Longan crude polysaccharide LP. Subsequently, its structural characterization, anti-aging activity and mechanism were studied. The results showed that LP-A was an acidic heteropolysaccharide with an average molecular weight (Mw) of 4.606 × 104 Da which was composed of nine monosaccharides. The scavenging rate of ABTS free radical in vitro reached 99 %. In the nematode life experiment, 0.3 mg/mL LP group and LP-A group could prolong the average lifespan of nematodes by 9.31 % and 25.80 %, respectively. Under oxidative stress stimulation, LP-A group could prolong the survival time of nematodes by 69.57 %. In terms of mechanism, Longan polysaccharide can regulate insulin / insulin-like growth factor (IIS) signaling pathway, increase the activity of antioxidant enzymes, reduce lipid peroxidation, enhance the body's resistance to stress damage, and effectively prolong the lifespan of nematodes. In conclusion, LP-A has better anti-aging activity than crude polysaccharide LP, which has great potential for developing as an anti-aging drug.

20.
Arch Microbiol ; 206(5): 225, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38642078

RESUMO

Cordyceps militaris has been extensively cultivated as a model cordyceps species for commercial purposes. Nevertheless, the problems related to strain degeneration and breeding technologies remain unresolved. This study assessed the physiology and fertility traits of six C. militaris strains with distinct origins and characteristics, focusing on single mating-type strains. The results demonstrated that the three identified strains (CMDB01, CMSY01, and CMJB02) were single mating-type possessing only one mating-type gene (MAT1-1). In contrast, the other three strains (CMXF07, CMXF09, and CMMS05) were the dual mating type. The MAT1-1 strains sourced from CMDB01, CMSY01, and CMJB02 consistently produced sporocarps but failed to generate ascospores. However, when paired with MAT1-2 strains, the MAT1-1 strains with slender fruiting bodies and normal morphology were fertile. The hyphal growth rate of single mating-type strains (CMDB01, CMSY01, and CMJB02) typically surpassed that of dual mating-type strains (CMXF07, CMXF09, and CMMS05). The growth rates of MAT1-2 and MAT1-1 strains were proportional to their ratios, such that a single mating-type strain with a higher ratio exhibited an increased growth rate. As C. militaris matured, the adenosine content decreased. In summary, the C. militaris strains that consistently produce sporocarps and have a single mating type are highly promising for production and breeding.


Assuntos
Cordyceps , Cordyceps/genética , Genes Fúngicos Tipo Acasalamento , Melhoramento Vegetal , Adenosina , Esporos Fúngicos/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...